Synthesis and Reactions of Fluoroalkanesulfonyl Azides and *N*,*N*-Dichlorofluoroalkanesulfonamides

Shi-Zheng Zhu

Shanghai Înstitute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, Peoples' Republic of China

Thermolysis or photolysis of fluoroalkanesulfonyl azides $R_FSO_2N_3$ afforded the corresponding nitrene intermediates R_FSO_2N which reacted readily with alkanes, alkenes, benzene, dimethyl sulfide, dimethyl sulfoxide, pyridine and triphenylphosphine to give insertion or addition products. Similar results were obtained by the reactions of *N*.*N*-dichlorofluoroalkanesulfonamides, $R_FSO_2NCl_2$, with the same reagents in the presence of zinc powder. Treatment of $R_FSO_2NCl_2$ with alkene in the absence of zinc powder gave only a 1:1 adduct *via* a free-radical intermediate $R_FSO_2NCl_2$.

Many azides (e.g. phenyl azide, alkane- or arene-sulfonyl azide and azidoformates, etc.), when heated or irradiated undergo decomposition and react via a nitrene intermediate R-N¹⁻⁵ (R = aryl, R'OCO, R'SO₂, ArSO₂ etc.). The reactions of trifluoromethanesulfonyl azide, first synthesized from the reaction of trifluoromethanesulfonic acid anhydride with sodium azide in 1965,⁶ as a trifluoromethanesulfonyl nitrene precursor are little known. The sole report of its reactions concerns those with aromatic compounds.⁷

N,N-Dichlorotoluene-*p*-sulfonamide (dichloramine-T) has been reported as a convenient tosyl nitrene precursor.⁸ The fluoro-containing analogue N,N-dichlorotrifluoromethanesulfonamide CF₃SO₂NCl₂ was first prepared in 1974⁹ but its chemistry has been little studied. Recently, Yagupol'skii reported its reactions with diphenyl sulfide¹⁰ and trifluoromethyl phenyl sulfide.¹¹

In connection with our studies on the carbene- and nitrenecontaining perfluoroalkanesulfonyl functionality, $^{12-14}$ we here describe the preparation of fluoroalkanesulfonyl azides $R_FSO_2N_3$ 1 and N,N-dichlorofluoroalkanesulfonamides $R_FSO_2NCl_2$ 8 and their reactions as fluoroalkanesulfonyl nitrene R_FSO_2N precursors; other reactions of 8 are also described.

Results and Discussion

Compounds 1 were conveniently prepared by treatment of perfluoroalkanesulfonyl fluoride with sodium azide in methanol at room temperature,¹⁵ thus:

Perfluoroalkanesulfonyl azides 1, colourless liquids with a characteristic pungent odour, could be stored unchanged at room temperature but decomposed at ca. 120 °C. When irradiated, compound 1 decomposed readily to form perfluoro-alkanesulfonyl nitrene with the elimination of nitrogen (see Scheme 1).

Irradiation of compound 1 in an excess of cyclohexane gave the insertion product *N*-cyclohexylperfluoroalkanesulfonamides 2 together with the minor product $R_FSO_2NH_2$ 7 (20%). Cycloaddition occurred smoothly with 1,4-dimethylbut-2-ene to yield 2,2,3,3-tetramethylaziridine 3. It is noteworthy that in this reaction the corresponding insertion product $R_FSO_2NHCH_2CMe=CMe_2$ was absent. In our previous work on the bis(perfluoroalkanesulfonyl)carbene which was formed by photolysis of $[PhI^+][C(SO_2R_F)_2]^-$, we found that the carbene intermediate readily added to the C=C bond of

Scheme 1 Reagents, conditions and yields (%): i, cyclohexane, UV, 52; ii, Me₂C=CMe₂, UV, 61; iii, CH₂Cl₂-SMe₂, 25 °C, 78; iv, Et₂O-PPh₃, 25 °C, 70; v, P(OEt)₃, 60 °C, 6 h, 67

cyclohexene or 1,4-dimethylbut-2-ene, and did not insert into the allylic carbon-hydrogen bond. The electrophilic perfluoroalkanesulfonyl nitrene intermediate was also easily captured by dimethyl sulfide, triphenylphosphine and triethoxyphosphine giving compounds 4, 5 and 6, respectively. Such results indicated that in these reactions the fluoroalkanesulfonyl nitrenes reacted mainly in their singlet state.

Recently, Szonyi reported that, R_FC₂H₄N=N-N=PPh₃ was obtained from the reaction of $R_F C_2 H_4 N_3$ with PPh₃.¹⁶ In our hands, however, even when the reaction was carried out at 0 °C, addition of compound 1 to a solution of PPh₃ in Et₂O gave immediate evolution of nitrogen. This is because, compared with $R_FC_2H_4N=PPh_3$,¹⁶ the product $R_FSO_2N=PPh_3$ 5 is more unstable and, when exposed to air, decomposes readily to $R_FSO_2NH_2$ and Ph_3PO ; this is similar to the behaviour of the CF₃SO₂N=BiPh₃.¹⁷ In contrast, N,N-dimethylsulfiniofluoroalkanesulfonamides $R_FSO_2N=SMe_2 4$, which were obtained by treatment of 1 with dimethyl sulfide, are stable compounds, remaining unchanged for several weeks at room temperature and capable of being recrystallized (CH₂Cl₂-MeCN) to give crystalline material suitable for X-ray structure analysis. Fig. 1 shows the molecular structure of 4b. It was noteworthy that the S^{VI} -N bond (1.578 Å) is shorter than the S^{IV} -N bond (1.619 Å) and both are shorter than the normal S-N single bond length (1.740 Å).^{18,19} The average value of the S–O bond length (1.424 Å), is very closely similar to that of the S-O bond length in $(CF_3SO_2)_2CHK$ (1.428 Å), in which the electron is delocalized to the two oxygen atoms.²⁰ The S–N–S bond angle is 115.2°,

Table 1 Compounds 1 prepared

Entry	R _F	Product 1	B.p. (°C/mmHg)	Yield (%)	v/cm ⁻¹
1	C ₄ F ₉	a	32/4	75	2276, 2150
2	Cl(CF ₂) ₂ O(CF ₂) ₂	b	38/4	75	2252, 2120
3	I(CF ₂) ₂ O(CF ₂) ₂	c	40/4	78	2250, 2120
4	H(CF ₂) ₂ O(CF ₂) ₂	d	38/4	72	2251, 2130
5	MeO ₂ CCF ₂	f	50/4	82	2280, 2140

Fig. 1 The structure of compound 4b. Selected bond lengths (Å) and bond angles (°). S(1)-N, 1.578(6); S(2)-N, 1.619(7); S(1)-O(1), 1.413(6); S(1)-O(2), 1.435(5). S(1)-N-S(2), 115.2(4); N-S(2)-C(5), 102.4(5); N-S(1)-C(4), 104.1(4).

which is smaller than the theoretically expected (120°), an effect arising from the nitrogen's localized lone pair. From these data, it is possible to conclude that the S-N-S group of compound **3** contains a delocalized $d-\pi$ bond system as shown in structure I.

Although, as mentioned above, there was immediate evolution of nitrogen when compound 1 was mixed with PPh₃ at 0 °C, its reaction with (EtO)₃P was slow; for example, even after the reaction mixture had been stirred at room temperature for 8 h, some azide still remained. The IR spectrum of compound 1 was used to monitor the progress of the reaction. Thus, it was found when the reaction mixture was heated at 60 °C for 7 h, the N₃ absorption peak disappeared completely, the product being $R_FSO_2N(Et)P(O)(OEt)_2$ as a result of the rearrangement of $R_FSO_2N=P(OEt)_3$. Varvoglis has reported a similar result, although, the isomerization was effected under more vigorous conditions.²¹ (Scheme 2).

N,N-Dichlorofluoroalkanesulfonamides were conveniently prepared by the one-pot reaction of fluoroalkanesulfonamides with aq. KOH and chlorine gas (Scheme 3).

Compounds 8 are unstable, yellowish liquids which after storage at room temperature for 1 week show almost a 50%transformation into the corresponding fluoroalkanesulfonamides. ¹⁹F NMR spectroscopy was used to monitor this transformation, the chemical shifts of CF₂S in compounds 7 and 8 being at 40 and 29 ppm, respectively (TFA external standard and the upfield is positive). Heating of compound 8 with benzene in the presence of zinc dust afforded 70% of $R_FSO_2NHC_6H_5$ 9. Similarly, treatment of compound 8 with dimethyl sulfide or dimethyl sulfoxide gave the sulfonium ylide $R_FSO_2N=SMe_2$ 4 and the sulfoxonium ylide $R_FSO_2N=S(O)$ -Me₂ 10, respectively. As already stated, compound 1 undergoes thermal decomposition at ca. 120 °C but when heated under reflux with an excess of cyclohexane or 2,3-dimethylbut-2-ene it failed to react. However, compound 8 when mixed with styrene or 2,3-dimethylbut-2-ene at room temperature in the presence of zinc powder gave the N-fluoroalkylsulfonylaziridines $R_FSO_2NCR^1R^2CR^3R^4$ 11 together with $R_FSO_2NH_2$ (ca. 15%). In contrast to the sulfonium ylides 4, coupounds 10 are high

boiling point liquids. i R_FSO_2NHPh g ii $R_FSO_2N=SMe_2$ ii $R_FSO_2N=SMe_2$ ii $R_FSO_2N=S(O)Me_2$ ii $R_FSO_2N=S($

Scheme 4 Reagents, conditions and yields: i, C_6H_6 , reflux, 8 h, 70%; ii, Me_2S , room temp., 8 h, 68%; iii, Me_2SO , 60 °C, 8 h, 65%; iv, PhCH=CH₂, room temp., 8 h, 62% or Me_2C =CMe₂, room temp., 8 h, 64%

 $R^1 = R^2 = R^3 = R^4 = Me$

These results indicate that, as with the reaction of fluoroalkanesulfonyl azides, fluoroalkanesulfonyl nitrene intermediates are involved in all the above reactions. It was noteworthy that the reaction of $\mathbf{8}$ with styrene occurred rapidly without zinc powder to give 1:1 addition (Scheme 5).

8 + PhCH =
$$CH_2 \xrightarrow{CH_2CI_2} R_FSO_2N(CI)CH_2CH(CI)Ph$$

12
Scheme 5

This reaction was shown to be a free-radical process, the radical intermediate $R_FSO_2NCICH_2CHPh$ being captured by Bu'NO. Its ESR spectrum showed the triple doublet peaks $(a_N = 15.18 \text{ G}, a_H = 3.04 \text{ G}, g = 2.0052$, see Fig. 2). Reduction of 12 by NaHSO₃, followed by elimination of HCl by alcoholic NaOH gave *N*-fluoroalkylsulfonylaziridine 11a.^{22,23}

It has been reported ²⁴ that $C_6F_5N=NC_6F_5$ 13 is obtained when $C_6F_5NCl_2$ is heated. It is also formed upon triplet

Fig. 2 The ESR spectrum of R_FSO₂N(Cl)CH₂CH(Ph)N(Bu^t)O[•]

12 $\xrightarrow{\text{NaHSO}_3}$ R_FSO₂NHCH₂CH(CI)Ph $\xrightarrow{\text{NaOH/EtOH}}$ R_FSO₂NCH₂CHPh -HCI R_FSO₂NCH₂CHPh 11a Scheme 6

photosensitized decomposition of $C_6F_5N_3$ but not upon direct photolysis.²⁵ In our hands neither photolysis nor thermolysis of compounds 1 and 8 gave the corresponding dimeric product $R_FSO_2N=NSO_2R_F$.

Conclusions.—Fluoroalkanesulfonyl azides and N,N-dichlorofluoroalkanesulfonamides, prepared in moderate to good yields, are reactive compounds which react with numerous organic reagents under a variety of reaction conditions via a fluoroalkanesulfonyl nitrene intermediate. The convenient preparation of these compounds together with their reactive chemical properties make them attractive and useful reagents for the introduction of the R_FSO₂N functionality into organic molecules.

Experimental

M.p.s were measured on a Thiele apparatus, and both m.p.s and b.p.s are uncorrected. Solvents were purified before use. ¹H NMR and ¹⁹F NMR spectra were recorded on a Varian-360L instrument with Me₄Si and TFA as an internal and an external standard, respectively. ³¹P NMR spectra were recorded on a JEOL-XL 90Q instrument with H₃PO₄ (85%) as external standard. Elemental analyses were performed by this Institute. IR spectra were obtained with an IR-440 Shimadzu spectrophotometer. Low resolution mass spectra were obtained on a Finnigan GC-MS 4021 Instrument. ESR spectra were recorded on a Varian E-112 spectrometer.

Preparation of Fluoroalkanesulfonyl Azides 1.—General procedure. A mixture of fluoroalkanesulfonyl fluoride (10 mmol), sodium azide (10 mmol) and MeOH (20 cm³) was stirred at 20 °C for 8 h. The sodium fluoride was filtered off and the filtrate was poured into ice-water; the oily layer was then separated, dried (Na₂SO₄) and distilled *in vacuo* to give 1. The yields, b.p. and IR results are given in Table 1.

 $C_4F_9SO_2N_3$ 1a. δ_F (neat, positive for upfield shift) 5.4 (s, CF₃), 37.7 (m, CF₂), 45.3 (m, CF₂) and 50.2 (s, CF₂S); m/z (rel. int.) 325 (M⁺, 1.08), 219 (C₄F₉⁺, 76.38), 90 (⁺SON₃, 14.21) and 69 (CF₃⁺, 100) (Found: C, 14.9; F, 53.0; N, 12.7. Calc. for C₄F₉N₃O₂S: C, 14.79; F, 52.62; N, 12.92%).

Cl(CF₂)₂O(CF₂)₂SO₂N₃ **1b**. $\delta_{\rm F}$ (neat) -2.0 (s, ClCF₂), 5.3 (m, OCF₂), 10.6 (m, CF₂O) and 37.3 (s, SCF₂); *m/z* 359/357 (M⁺, 0.73/2.30), 90 (⁺SON₃, 100), 87/85 (ClCF₂⁺ and 23.56/73.03) (Found: C, 13.7; F, 43.2; N, 11.35. Calc. for C₄ClF₈N₃O₃S: C, 13.43; F, 42.52; N, 11.75%).

 $I(CF_2)_2O(CF_2)_2SO_2N_3$ 1c. δ_F (neat) - 11.0 (s, ICF₂), 5.0 (m, OCF₂), 9.1 (m, CF₂O) and 38.2 (s, CF₂S); *m/z* 449 (M⁺, 2.25) and 90 (⁺SON₃, 100) (Found: C, 10.7; F, 34.5; N, 9.9;

S, 7.0. Calc. for $C_4F_8IN_3O_3S$: C, 10.69; F, 33.87; N, 9.35; S, 7.12%).

H(CF₂)₂O(CF₂)₂SO₂N₃ 1d. $\delta_{\rm F}$ (neat) 2.0 (m, OCF₂), 9.3 (m, CF₂O), 34.3 (s, CF₂S) and 58.3 (d, HCF₂, $J_{\rm HF}$ 54); $\delta_{\rm H}$ (neat, TMS inter.) 6.26 (t, HCF₂); m/z 323 (M⁺, 2.41), 296 (M⁺ - N₂, 100), 90 (⁺SON₃, 18.07) and 51 (HCF₂⁺, 40.16) (Found: C, 15.0; F, 47.4; N, 12.8. Calc. for C₄HF₈N₃O₃S: C, 14.86; F, 47.06; N, 13.00%).

MeO₂CCF₂SO₂N₃ 1e. $\delta_{\rm F}$ (neat) 29.3 (s, CF₂); $\delta_{\rm H}$ 3.82 (s, CH₃); m/z 215 (M⁺, 1.07), 187 (M⁺ - N₂, 8.33), 109 (M⁺ - SO₂N₃, 14.81) and 43 (CH₃CO⁺, 100) (Found: C, 16.3; H, 1.6; F, 18.1; N, 19.9. Calc. for C₃H₃F₂N₃O₂S: C, 16.74; H, 1.40; F, 17.67; N, 19.53%).

Reactions of the Azides 1.—Upon irradiation. A solution of 1d (1.6 g, 5 mmol) in cyclohexane (5 cm³) was subjected to UV irradiation (400 W low-pressure mercury lamp) at room temperature for 6 h, after which the excess of C_6H_{12} was distilled off. The residue was distilled *in vacuo* to give 2d (1.0 g, 52%).

H(CF₂)₂O(CF₂)₂SO₂NHC₆H₁₁ **2d**, b.p. 85–87 °C/1 mmHg, m.p. 32–34 °C, ν_{max} (KBr)/cm⁻¹ 3285s, 2920s, 2830s, 1372s, 1320s, 1280s, 1220–1110vs, 978s, 918m, 892s, 860m, 748s and 610s; δ_{F} [(CD₃)₂CO] 5.5 (m, OCF₂), 12.6 (m, CF₂O), 40.6 (s, CF₂S) and 62.0 (d, HCF₂); δ_{H} 1.23–2.03 (m, C₆H₁₁), 3.70 (br, NH) and 6.40 (t, HCF₂); *m*/*z* 379 (M⁺, 10.29) and 83 (C₆H₁₁⁺, 100) (Found: C, 31.6; H, 3.5; F, 40.0; N, 3.8. Calc. for C₁₀H₁₃F₈NO₃S: C, 31.66; H, 3.43; F, 40.10; N, 3.69%).

Similar treatment of 1d with 2,3-dimethylbut-2-ene gave the cycloaddition product $H(CF_2)_2O(CF_2)_2SO_2NC(Me)_2C(Me)_2$ 3d; b.p. 42-44 °C/3 mmHg; $v_{max}(film)/cm^{-1}$ 2985s, 2960m, 2870m, 1461s, 1445m, 1382s, 1330m, 1240m, 1220-1110vs, 975s, 920m, 880s, 750m and 600s; δ_F 4.5 (m, OCF₂), 12.6 (m, CF₂O), 41.5 (s, CF₂S) and 61.6 (d, HCF₂); δ_H 0.8 (s, CH₃) and 5.6 (t, HCF₂); m/z 380 (M⁺H, 74.57), 363 (M⁺ - O, 4.02), 301 (M⁺ - N - SO₂, 8.46), 258 (M⁺ - N - SO₂ - C₃H₇, 3.41), 214 (M⁺ - HCF₂CF₂SO₂, 1.64), 146 (M⁺ - R_FO, 5.43), 101 (HC₂F₄⁺, 96.54), 100 (C₂F₄⁺, 23.84), 83 (C₆H₁₁⁺, 24.74), 57 (C₄H₉⁺, 100), 51 (HCF₂⁺, 4.64) and 43 (C₃H₇⁺, 44.24) (Found: C, 31.4; H, 3.7; F, 40.9; N, 3.9. Calc. for C₁₀H₁₃F₈NO₃S: C, 31.66; H, 3.43; F, 40.11; N, 3.69%).

With dimethyl sulfide. A solution of 1b (1.8 g, 5 mmol), Me₂S (0.6 g, 10 mmol) and CH₂Cl₂ (10 cm³) was stirred at 25 °C for 8 h after which it was evaporated. The residue was crystallized from MeCN to give the crude product 4b (2 g, 73%), recrystallization of which from MeCN and CH₂Cl₂ gave crystals suitable for X-ray structure analysis.

Cl(CF₂)₂O(CF₂)₂SO₂N=SMe₂ **4b**, m.p. 47 °C; ν_{max} (KBr)/ cm⁻¹ 3017m, 2930w, 1339s, 1304s, 1230s, 1200–1120vs, 982s, 979s, 687m, 665m and 615s; $\delta_{\rm F}$ – 2.0 (s, ClCF₂), 6.0 (m, OCF₂), 11.2 (m, CF₂O) and 40.5 (s, CF₂S); *m/z* 394/392 (M⁺H 18.69/42.14) and 140 (M⁺ – R_F, 100) (Found: C, 18.2; H, 1.2; F, 38.9; N, 3.5. Calc. for C₆H₆ClF₈NO₃S: C, 18.39; H, 1.53; F, 38.93; N, 3.57%).

Similar treatment of 1c (2.3 g, 5 mmol) with Me₂S (0.6 g, 10 mmol) gave I(CF₂)₂O(CF₂)SO₂N=SMe₂ 4c (1.7 g, 72%), m.p. 48–49 °C; ν_{max} (KBr)/cm⁻¹ 1595m, 1412s, 1380s, 1337s, 1298s, 1220–1130vs, 1090s, 912s, 761m, 708s and 598s; $\delta_{\rm F}$ (CD₃Cl) – 11.0 (s, ICF₂), 5.1 (m, OCF₂), 8.8 (m, CF₂O) and 39.5 (s, CF₂S); $\delta_{\rm H}$ 2.90 (s, 2 × CH₃); *m*/z 484 (M⁺H, 47.31), 483 (M⁺, 21.45), 308 (M⁺ – I – SO₂, 100) and 78 (SO₂N⁺, 47.14) (Found: C, 14.55; H, 0.9; F, 31.7; N, 3.05. Calc. for C₆H₆F₈INO₃S₂: C, 14.90; H, 1.24; F, 31.47; N, 2.90%).

With triphenylphosphine. Compound 1d (1.6 g, 5 mmol) was added dropwise into a solution of Ph₃P (1.3 g, 5 mmol) in anhydrous Et₂O (10 cm³) at 25 °C. Upon cessation of N₂ evolution the mixture was evaporated and the residue was sublimed *in vacuo* to give $H(CF_2)_2O(CF_2)_2SO_2N=PPh_3$ 5d (1.9 g, 70%), m.p. 88 °C; ν_{max} (KCl)/cm⁻¹ 3030s, 1590m, 1483m, 1438m, 1380m, 1278m, 1210s, 1180–1106vs, 1082m, 995m, 850m, 751s, 720s, 693s and 540s, $\delta_{\rm F}$ 4.0 (m, OCF₂), 11.3 (m, CF₂O), 39.5 (s, CF₂S) and 60.6 (d, HCF₂); $\delta_{\rm H}$ 7.55 (s, 15 H) and 6.13 (t, 1 H); *m/z* 558 (M⁺H, 1.37), 557 (M⁺, 0.86) and 262 (Ph₃P⁺, 100).

With triethyl phosphite. Compound 1b (2 g, 5.1 mmol) was added to a solution of (EtO)₃P (1.7 g, 10 mmol) and CCl₄ (10 cm³) and the reaction mixture was heated to 50 °C for 8 h. After this time an IR spectrum of the mixture showed that the N_3 peaks had disappeared. The excess of (EtO)₃P and CCl₄ were distilled off from the mixture and the residue was distilled in vacuo to give $H(CF_2)_2O(CF_2)_2SO_2N(Et)P(O)(OEt)_2$ 6d (1 g, 42%); $v_{max}(film)/cm^{-1}$ 2990s, 2910m, 1440w, 1395s, 1320m, 1285s, 1110–1230vs and 920m; $\delta_{\rm H}$ 5.85 (t, HCF₂), 3.80 (m, 4 H), 3.12 (m, 2 H) and 0.93 (m, 9 H); $\delta_{\rm F}$ 4.3 (m, OCF₂), 10.7 (m, CF₂O), 38.6 (s, SCF₂) and 61.8 (d, HCF₂); m/z 461 $(M^+, 1.85\%), 445 (M^+ - O, 7.57), 243 (M^+ - H - R_F, 47.5),$ $215 (M^+ - Et - R_F, 80.65), 188 (M^+ - R_F - 2Et, 100.0), 180$ $(M^+ - R_F SO_2, 64.06), 160 [(HO)_2 P(O) NHSO_2^+, 83.29], 137$ [(EtO)₂PO, 33.47] and 51 (HCF₂⁺, 14.23); $\delta_{\rm P}$ 2.03 (s) (Found: C 25.8; H, 3.6; N, 3.3. Calc. for C₁₀H₁₆F₈NO₆PS: C, 26.03; H, 3.47; N, 3.03%).

Preparation of N,N-Dichloroftuoroalkanesulfonamides R_F -SO₂NCl₂ 8.—General procedure. A mixture of the fluoroalkanesulfonamide I(CF₂)₂O(CF₂)₂SO₂NH₂ 7a (6.3 g, 15 mmol), KOH (1.7 g, 30 mmol) and water (15 cm³) in a 50 cm³ three-necked flask was stirred at room temperature for 2 h. The flask was then cooled in an ice-bath after which chlorine gas (4.3 g, 60 mmol) was introduced, the reaction temperature being kept in the range 0–5 °C. After this, the mixture was stirred at 20 °C for a further 2 h during which time a yellowish oil separated. This was dried (Na₂SO₄) and distilled *in vacuo* to give 8a (3.8 g, 52%). Similarly, treatment of 7b (5 g, 15 mmol) or 7c (4.5 g, 15 mmol) with KOH and chlorine gave 8b (3.8 g, 63%) or 8c (3.3 g, 60%), respectively.

Compound **8a**, b.p. 42 °C/2 mmHg; $v_{max}(film)/cm^{-1}$ 1605w, 1420m, 1380s, 1320vs, 1292s, 1220–1120vs, 1092s, 990s, 713s, 600m and 530m; $\delta_{\rm F}$ –11.8 (s, ICF₂), 5.2 (m, OCF₂), 8.5 (m, CF₂O) and 29.3 (s, CF₂S); *m/z* 492 (M⁺H, 0.62%), 424 (M⁺ – F – SO, 1.90), 364 (M⁺ – I, 0.96), 343 (M⁺ – SO – C₂F₄, 5.52), 329 (M⁺ – SON – C₂F₄, 4.82), 227 (IC₂F₄⁺, 100.0) and 205 (ISO₂N⁺, 15.70) (Found: C, 10.0; F, 31.3; N, 3.0. Calc. for C₄Cl₂F₈INO₃S: C, 9.76; N, 2.85; F, 30.89%).

Compound **8b**, b.p. 40–41 °C/mmHg; $\nu_{max}(film)/cm^{-1}$ 1602w, 1422m, 1382s, 1324vs, 1300s, 1225–1110vs, 987m, 910s, 721s, 650s and 500s; $\delta_{\rm F}$ – 2.0 (s, ClCF₂), 6.0 (m, OCF₂), 11.8 (m, CF₂O) and 29.0 (s, CF₂S) (Found: C, 11.9; Cl, 26.18; F, 38.50; N, 3.8. Calc. for C₄Cl₃F₈NO₃S: C, 11.98; N, 3.50; Cl, 26.59; F, 37.95%).

Compound **8c**, b.p. 38-39 °C/2 mmHg; $\nu_{max}(\text{film})/\text{cm}^{-1}$ 2998w, 1620m, 1422s, 1320m, 1282s, 1200–1120vs, 1005m, 940m, 850m, 744m and 680m; δ_{H} 5.83 (t, HCF₂); δ_{F} 6.3 (m, OCF₂), 14.3 (m, CF₂O), 29.3 (s, CF₂S) and 63.0 (d, HCF₂) (Found: C, 13.1; N, 4.0; Cl, 19.5; F, 41.91. Calc. for C₄HCl₂F₈NO₃S: C, 13.11; N, 3.83; C, 19.40; F, 41.53%).

Reactions of Compound 8 in the Presence of Zinc Powder.—(i) Reaction of 8b with benzene. Compound 8b (2.0 g, 5 mmol) was added to a mixture of benzene (10 cm³) and zinc powder (1 g, 15 mmol) in a 25 cm³ flasked equipped with a magnetic stirring bar at room temperature. The mixture was then stirred at 80 °C for 7 h after which the solid was filtered off and the filtrate was distilled to remove the excess of benzene. The residue when crystallized from MeOH–MeCN to give Cl(CF₂)₂O(CF₂)₂-SO₂NHPh 9b as a white solid (1.3 g, 62%), m.p. 70–72 °C; v_{max} (KBr)/cm⁻¹ 3352s, 3340s, 3030w, 1583w, 1500m, 1368vs, 1330s, 1220–1120vs, 990s, 918s, 720s, 675m, 646m and 502s; $\delta_{\rm H}$ 7.33 (s, 5 H) and 6.23 (s, ¹H); $\delta_{\rm F}$ –2.0 (s, ClCF₂), 6.3 (m, OCF₂), 12.0 (m, CF₂O) and 41.3 (s, CF₂S) (Found: C, 29.4; H, 1.5; N, 3.8; F, 37.1. Calc. for C₁₀H₆ClF₈NO₃S: C, 29.45; H, 1.47; F, 37.30; N, 3.44%).

(ii) Reaction of **8b** and **8c** with dimethyl sulfide. Compound **8b** (2.0 g, 5 mmol) was added dropwise to a mixture of Me₂S (3 g, 48 mmol) and zinc powder (1 g, 15 mmol) at room temperature and the mixture stirred for 7 h at 22 °C. The solid was filtered off and the filtrate was distilled to remove excess of Me₂S. The residue was crystallized from MeCN to give Cl(CF₂)₂-O(CF₂)₂SO₂N=SMe₂ **4b** (1.4 g, 71%). Similarly, H(CF₂)₂O-(CF₂)₂SO₂N=SMe₂ **4d** (69%) was prepared. Compound **4b** m.p. 47 °C; ν_{max} (film)/cm⁻¹ 3017m, 2930w, 1339s, 1340s, 1230s, 1200–1120vs, 982s, 979s, 687m, 665m and 615s; $\delta_{\rm H}$ 2.83 (s, 2 × CH₃), $\delta_{\rm F}$ -2.0 (s, ClCF₂), 6.0 (m, OCF₂), 11.2 (m, CF₂O) and 40.5 (s, CF₂S); m/z 392/394 (M⁺, 42.14/18.69%) and 140 (M⁺ - R_F, 100.0) (Found: C, 18.2; H, 1.2; F, 39.9; N, 3.5. Calc. for C₆H₆F₈ClNO₃S₂: C, 18.39; H, 1.53; F, 38.93; N, 3.57%).

Compound 4d m.p. 45–47 °C; ν_{max} (KBr)/cm⁻¹ 3015m, 2992w, 1440m, 1340s, 1310s, 1227s, 1210–1125vs, 973s, 756m, 668m and 610s; $\delta_{\rm H}$ 5.73 (tt, HCF₂) and 2.80 (s, 6H); $\delta_{\rm F}$ 6.70 (m, OCF₂), 15.0 (m, CF₂O), 42.3 (s, CF₂S) and 63.3 (d, HCF₂); *m/z* 358 (M⁺H, 2.07%), 357 (M⁺, 1.30), 343 (M⁺H – Me, 7.64), 309 (M⁺ – SO, 32.51), 140 (⁺SO₂N=SMe₂, 100.0), 124 (Me₂SNSO⁺, 17.88), 100 (C₂F₄⁺, 6.95), 76 (Me₂SN⁺, 42.37), 62 (Me₂S⁺, 22.51) and 51 (HCF₂⁺, 6.83) (Found: C, 20.5; H, 2.3; N, 3.8; F, 42.1. Calc. for C₆H₇F₈NO₃S₂: C, 20.17; H, 1.96; F, 42.58; N, 3.92%).

(iii) Reaction of 8b and 8c with DMSO. A mixture of 8b (2.0 g, 5 mmol), DMSO (10 cm³) and zinc powder (1 g, 15 mmol) was stirred for 8 h at 60 °C. After filtration, the filtrate was distilled in vacuo to give $Cl(CF_2)_2O(CF_2)_2SO_2N=S(O)Me_2$ 10b (1.3 g, 64%). Similarly, treatment of 8c with DMSO gave $H(CF_2)_2$ - $O(CF_2)_2SO_2N=S(O)Me_2$ 10c (1.2 g, 63%). Compound 10b b.p. 98–100 °C/2 mmHg; $v_{max}(film)/cm^{-1}$ 2971s, 2892s, 1580m, 1443m, 1380s, 1370s, 1277s, 1210-1100vs, 1005vs, 980s, 881m, 700m, 653s and 517s; $\delta_{\rm H}$ 3.50 (s, 6 H); $\delta_{\rm F}$ -1.0 (s, ClCF₂), 6.5 (m, OCF₂), 11.6 (m, CF₂O) and 42.3 (s, CF₂S); m/z 408/410 $(M^+H, 0.75/0.37\%), 392/394 (M^+H - O, 25.96/16.09), 372$ $(M^+ - Cl, 2.64), 344/346 (M^+H - SO_2, 4.34/2.72), 332/334$ $(M^+H - SMe_2 - N, 20.22/8.40)$, 156 $(M^+ - R_F, 11.09)$, 141 $(M^+ - R_F - Me, 4.99)$, 140 $(M^+ - R_F - O, 17.32)$, 135/137 , 15.39/7.45), 85/87 (CICF₂⁺, 14.72/6.37), 80 (SOS⁺ $(C|C_2F_4)$ 100), 78 (Me₂SO⁺, 5.74), 64 (SO₂⁺, 85.47), 61 (MeSN⁺, 12.90) and 47 (MeS, 5.14) (Found: C, 18.0; H, 1.8; F, 37.0; N, 3.1. Calc. for C₆H₆ClF₈NO₄S₂: C, 17.67; H, 1.47; F, 37.30; N, 3.44%).

Compound 10c, b.p. 98 °C/2 mmHg; $\nu_{max}(film)/cm^{-1}$ 2950s, 2880s, 1588m, 1440m, 1380s, 1325s, 1220–1110vs, 1010vs, 950s, 860m, 750m, 702m, 603s and 500m; $\delta_{\rm H}$ 5.83 (t, HCF₂) and 3.50 (s, 6 H); $\delta_{\rm F}$ 6.60 (m, OCF₂), 14.6 (m, CF₂O), 42.3 (s, CF₂S) and 63.3 (d, HCF₂); m/z 359 (M⁺H – Me, 0.15%), 353 (M⁺H – F, 0.63), 325 (M⁺ – SO, 3.70), 225 (M⁺ – SO – C₂F₄, 2.78), 223 (M⁺ – C₃F₆, 3.94), 173 (M⁺ – C₂F₈, 3.11), 157 (M⁺H – R_F, 5.73), 141 (M⁺H – R_F – O, 4.63), 101 (HC₂F₄⁺, 8.74), 79 (Me₂S⁺OH, 100.0), 78 (Me₂SO⁺, 72.07), 63 (MeSO⁺, 41.37), 62 (NSO⁺, 10.07) and 51 (HCF₂⁺, 3.17) (Found: C, 19.1; H, 1.6; F, 40.3; N, 4.1. Calc. for C₆H₇F₈NO₄S₂: C, 19.30; H, 1.88; F, 40.75; N, 3.75%).

(iv) Reaction of 8 with alkenes. A mixture of 8c (1.8 g, 5 mmol), 2,3-dimethylbut-2-ene (1 g, 12 mmol) and zinc powder (1 g, 15 mmol) was stirred at room temperature for 8 h and then filtered. The filtrate was distilled *in vacuo* to give $H(CF_2)_2O(CF_2)_2SO_2NCMe_2CMe_2$ 3d (1.2 g, 65%). Similarly, treatment of 8a with styrene gave $I(CF_2)_2O(CF_2)_2SO_2NCH_2CHC_6H_5$ 11a (1.6 g, 63%). Compound 11a, b.p. 132–135 °C/2 mmHg;

 v_{max} (film)/cm⁻¹ 3030w, 1585m, 1490m, 1420m, 1378s, 1326m, 1228–1110vs, 1005s, 952m, 862m, 605s and 500s; $\delta_{\rm H}$ 7.33 (s, 5 H), 4.83 (m, 1 H) and 2.95 (m, 2 H); $\delta_{\rm F}$ -11.3 (s, ICF₂), 5.3 (m, OCF₂), 8.3 (m, CF₂O) and 39.5 (s, CF₂S) (Found: C, 27.8; H, 2.0; F, 28.6; N, 2.5. Calc. for C₁₂H₈F₈INO₃S: C, 27.43; H, 1.52; F, 28.95; N, 2.67%).

Reaction of 8a with styrene without zinc powder. Compound 8a (2.5 g, 5 mmol) was added to a solution of styrene (2 g, 10 mmol) and CH₂Cl₂ (10 cm³). A portion (0.3 cm³) of this reaction mixture was subjected to ESR and gave the spectrum shown in Fig. 2 (a_N 15.18 G, a_H 3.04 G, g = 2.0052). The remaining solution was stirred at room temperature for 4 h after which the CH₂Cl₂ and excess of styrene were removed and the residue chromatographed (CHCl₃-light petroleum) to give 12 (1.8 g, 61%); $\delta_{\rm H}$ 7.33–7.90 (m, 5 H), 5.7 (m, 1 H) and 2.83 (m, 2 H); m/z 599/597/595 (M⁺, 0.84/5.01/7.53%); $\delta_{\rm F}$ -11.0 (s, ICF₂), 5.3 (m, OCF₂), 8.6 (m, CF₂O) and 39.0 (s, CF₂S) (Found: C, 24.4; H, 1.7; Cl, 11.6; F, 25.1; N, 11.6. Calc. for C₁₂H₈Cl₂F₈INO₃S: C, 24.16; H, 1.34; Cl, 11.91; F, 25.50; N, 2.35%).

Chemical Transformation of Compound 12.—A solution of 12 (1.8 g, 3 mmol) in CHCl₃ (15 cm³) was added to a solution of NaHSO₃ (0.5 g, 5 mmol) and water (10 cm³) in a 50 cm³ flask and the mixture was stirred 4 h at room temperature. NaOEt (0.4 g, 5 mmol) in EtOH (5 cm³) was then added to the mixture which was then further stirred for 4 h after this it was poured into ice-water (25 cm³) and the oily layer was separated, dried (Na_2SO_4) and distilled in vacuo to give 11a (0.8 g, 49%).

Crystal data. $C_6H_6O_3NF_8S_2Cl$, M = 391.69, monoclinic, space group $P2_1/a$, a = 6.667(2), b = 26.840(7), c = 8.372(3), $\beta = 112.59(2), V = 1383.2$ Å, $Z = 4, D_c = 1.881$ g cm⁻³ F(000) = 776, (Mo-K α) = 6.616 cm, crystal dimensions 0.20 × 0.10×0.10 mm, intensity data were collected at 20 °C with an Enraf-Nonius CAD4 diffractometer using graphite-monochromated Mo-K α radiation. 2705 Unique reflections were measured in the range $0^{\circ} < 2\theta < 50^{\circ}$ with 0 < h < 7, $0 < k < 31, \theta < l < 9$. The correction of LP and absorption was applied for the reflection data. The structure was solved via direct methods. The positions for all H atoms were carried out by theoretical calculation.

All positional parameters and anisotropic thermal parameters for non-H atoms were refined by full-matrix least squares technique. The final R, R_w and S values were 0.075, 0.073, 1.96, respectively, for 1056 observed reflections $[F^2 > 3\sigma(F)]$. All calculations were performed on a MICRO-VAX II computer with SDP, MULTAN82 and ORTEP programs. Scattering factors were taken from International Tables for X-ray Crystallography (1974).

Acknowledgements

The author thanks the National Natural Science Foundation of China (NNFSC) for financial support.

References

- W. Lwowski and T. W. Mattingly, *Tetrahedron Lett.*, 1962, 277.
 M. F. Slon, T. J. Prosser, N. R. Newburg and D. S. Breslow,
- Tetrahedron Lett., 1964, 2945. 3 W. Lwowski and T. J. Maricicb, J. Am. Chem. Soc., 1965, 87, 3630.
- 4 R. A. Abramovitch, G. N. Knaus and V. Uma, J. Am. Chem. Soc., 1969, 91, 7532.
- 5 R. Poe, J. Grayzar, M. J. Young, E. Leyva, K. A. Schnapp and M. S. Platz, J. Am. Chem. Soc., 1991, 113, 3209.
- 6 J. K. Ruff, Inorg. Chem., 1965, 4, 567.
 7 N. Kamigata, K. Yamamoto, O. Kawakita, K. Hiktta, H. Matsuyama, M. Yoshida and M. Kobayash, Bull. Chem. Soc. Jpn., 1984, 57, 3601
- 8 D. S. Breslow and M. F. Sloan, Tetrahedron Lett., 1968, 5349
- 9 V. P. Nazaretyan, O. A. Radchenko and L. M. Yagupol'skii, Zh. Org. Khim, 1974, 10(11), 2460.
- 10 R. Yu. Gavrilova, N. V. Kondratenko, V. I. Popov and L. M. Yagupol'skii, Zh. Org. Khim, 1989, 25(5), 1128.
- 11 N. V. Kondratenko, R. Yu. Gavrilova and L. M. Yagupol'skii, Zh. Org. Khim, 1988, 24(2), 456.
- 12 S. Z. Zhu and Q. Y. Chen, J. Chem. Soc., Chem. Commun., 1990, 1459.
- 13 S. Z. Zhu and A. W. Li, J. Fluorine Chem., 1993, 60, 175.
- 14 S. Z. Zhu, Tetrahedron Lett., 1992, 6503.
- 15 P. Nazaretyan and L. M. Yagupol'skii, Zh. Org. Khim, 1978, 14, 206. 16 F. Szonyi, F. Guennouni and A. Cambon, J. Fluorine Chem., 1991,
- 55, 85. 17 S. V. Pasenok, N. V. Kirij, Y. L. Yagupolskii, B. Naumann and W. Tyrra, J. Fluorine Chem., 1993, 63, 179
- 18 A. Kalman, Acta. Crystallogr., 1967, 22, 501.
- 19 A. Kucsman, A. Kalman and I. Kapvits, Acta Chim. Acad. Sci. Hung., 1967, 53(1), 97.
- 20 D. D. DesMarteau, W. T. Pennington, K. S. Song, S. Z. Zhu and R. Scott, Eur. J. Solid State Inorg. Chem., 1991, 28, 905.
- 21 L. Hatziarapoglou and A. Varvoglis, Synthesis, 1988, 913.
- 22 T. P. Sedem and R. W. Turner, J. Chem. Soc., 1968, 876.
- 23 U. K. Nadir, R. L. Sharma and V. V. Koul, J. Chem. Soc., Perkin Trans. 1, 1991, 2015.
- 24 Yu. G. Shermolovich, M. Polumbric, L. N. Markovskii, E. P. Saenko, G. G. Furin and G. G. Yakobson, Zh. Org. Khim., 1977, 2589 (Chem. Abstr. 1978, 88, 89240r).
- 25 R. Poe, J. Grayzar, M. J. T. Young, E. Leyva, K. A. Schnapp and M. S. Platz, J. Am. Chem. Soc., 1991, 113, 3209.

Paper 4/01641F Received 18th March 1994 Accepted 6th April 1994